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CANONICAL METRICS ON THE MODULI SPACE OF
RIEMANN SURFACES II

KEFENG L1U, XIAOFENG SUN & SHING-TUNG YAU

Abstract

In this paper, we continue our study of the canonical metrics on
the moduli space of curves. We first prove the bounded geometry
of the Ricci and perturbed Ricci metrics. By carefully choosing
the pertubation constant and by studying the asymptotics, we
show that the Ricci and holomorphic sectional curvatures of the
perturbed Ricci metric are bounded from above and below by
negative constants. Based on our understanding of the K&hler—
Einstein metric, we show that the logarithmic cotangent bundle
over the Deligne-Mumford moduli space is stable with respect to
the canonical polarization. Finally, in the last section, we prove
the strongly bounded geometry of the Kahler-Einstein metric by
using the Kéhler—Ricci flow and a priori estimates of the complex
Monge-Ampere equation.

1. Introduction

In [11], we started the project to understand the canonical metrics on
the Teichmiiller and the moduli spaces of Riemann surfaces, especially
the Kahler—Einstein metric. Our goal is to understand the geometry
and topology of the moduli spaces from understanding those classical
metrics, as well as to find new complete Kéahler metrics with good curva-
ture property and asymptotic behavior. In [11}], we studied in detail two
new complete Kéhler metrics, the Ricci and the perturbed Ricci metric.
In particular, we proved that the Ricci metric has bounded holomor-
phic bisectional curvature, and the perturbed Ricci metric, not only
has bounded holomorphic bisectional curvature, but also has negatively
pinched holomorphic sectional curvature. By using the perturbed Ricci
metric as a bridge, we were able to prove the equivalence of several
classical complete metrics on the Teichmiiller and the moduli spaces,
including the Teichmiiller metric, the Kobayashi metric, the Bergman
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metric, the Carathéodory metric, the Cheng—Yau, Kéhler—Einstein met-
ric, the McMullen metric, as well as the Ricci and the perturbed Ricci
metric. This also solved an old conjecture of Yau about the equivalence
of the Kahler-Einstein metric and the Teichmiiller metric.

In this paper, we continue our study on these metrics and other clas-
sical metrics, in particular, the Kéhler—Einstein metric, and the per-
turbed Ricci metric. One of the main results is the good understanding
of the two new metrics and the Kéhler—Einstein metric, from which we
will derive some important corollaries about the geometry of the moduli
spaces. We first prove that the Ricci curvature of the perturbed Ricci
metric has negative upper and lower bounds, and it also has bounded
geometry. Recall that it also has negatively bounded holomorphic sec-
tional curvature. The perturbed Ricci metric is the first known com-
plete Kahler metric on the Teichmiiller and the moduli spaces with
such good negative curvature property. We then focus on the Kéahler—
Einstein metric, study in detail its boundary behaviors and prove that
not only it has bounded geometry, but also all of the covariant deriv-
atives of its curvature are uniformly bounded. It is natural to expect
interesting applications of the good properties of the perturbed Ricci
and the Kéahler—Einstein metric. For example, as an application of our
detailed understanding of these metrics, we prove that the logarithmic
cotangent bundle of the moduli space is stable in the sense of Mumford.

This paper is organized as follows. In Section 2, we will prove that
both the Ricci metric and the perturbed Ricci metric have bounded
curvature. Especially, with a suitable choice of the perturbation con-
stant, the holomorphic sectional curvature and the Ricci curvature of the
perturbed Ricci metric are pinched by negative constants. As a simple
corollary, we immediately see that the dual of the logarithmic cotangent
bundle has no non-trivial holomorphic section. By using the Bers’ em-
bedding theorem and minimal surface theory, we then prove that the Te-
ichmiiller space equipped with either of these two metrics has bounded
geometry: bounded curvature and lower bound of injectivity radius.
McMullen proved that the McMullen metric has bounded geometry.

Having a complete Kéahler—Einstein metric puts strong restrictions on
the geometric structure of the moduli space. In Section 3, we will study
the cohomology classes defined by the Kéahler forms and Ricci forms of
the Ricci metric and the Kéhler—Einstein metric. As a direct corollary,
we will see easily that the moduli space is of logarithmic general type.
One of the most interesting applications of this study is the proof of the
stability of the logarithmic cotangent bundle of the moduli space in the
sense of Mumford.
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Finally, in Section 3, we will study the bounded geometry of the
Kahler—Einstein metric. We set up the Monge-Amperé equation from
a new metric obtained by deforming the Ricci metric along the Kahler—
Ricci flow. The work in [11] provides a C? estimate. We follow the work
of Yau in [22] and do the C3 and C* estimates. These estimates imply
that the curvature of the Kahler-Einstein metric is bounded. The same
method proves that all of the covariant derivatives of the curvature are
bounded. This gives us a much better understanding of the Kéahler—
Einstein metric.

Now, we give the precise statements of the main results in this paper.
We fix an integer g > 2 and denote by 7 = 7, the Teichmiiller space,
and M, the moduli space of closed Riemann surfaces of genus g.

Our first main result, proved in Section 2, is about the curvature
properties of the Ricci and the perturbed Ricci metric. We have two
theorems, the first one is about the Ricci metric:

Theorem 1.1. The holomorphic bisectional curvature, the holomor-
phic sectional curvature and the Ricci curvature of the Ricci metric T
on the moduli space Mg are bounded.

The proof of this theorem was sketched in [11]. We give the details
here.
The second theorem is about the perturbed Ricci metric:

Theorem 1.2. For any constant C' > 0, the bisectional curvature of
the perturbed Ricci metric T = 7 + Ch is bounded. Furthermore, with a
suitable choice of C, the holomorphic sectional curvature and the Ricci
curvature of T are bounded from above and below by negative constants.

Both of the above theorems are proved by a detailed analysis of the
boundary behavior of these metrics and their curvature. Together with
the following result, which is proved by using minimal surface theory
and the Bers’ embedding theorem, they imply that Ricci metric and the
perturbed Ricci metric both have bounded geometry.

Corollary 1.1. The injectivity radius of the Teichmdiller space
equipped with the Ricci metric or the perturbed Ricci metric is bounded
from below.

Let M, be the Deligne-Mumford compactification of the moduli
space of Riemann surfaces. Let E denote the logarithmic extension of
the cotangent bundle of the moduli space. The next result is an inter-
esting consequence of our detailed understanding of the Kdhler—Einstein
metric on the moduli spaces. It is proved in Section 3:
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Theorem 1.3. The first Chern class of E is positive and E is Mum-

ford stable with respect to c1(F).

We prove this theorem by using the good control of the K&ahler—
FEinstein metric and the Ricci metric we obtained near the boundary of
the moduli space. As a direct corollary, we have:

Corollary 1.2. The Deligne—Mumford moduli space Mg s of loga-
rithmic general type for any g > 2.

Our final result, proved in Section 4, is the following theorem about
the Kéhler—Einstein metric:

Theorem 1.4. The Kdahler—FEinstein metric on the Teichmaller space
T, has bounded geometry. Furthermore, the covariant derivatives of its
curvature are all uniformly bounded.

This theorem is proved by using the Kahler—Ricci low and the method
of Yau in his proof of the Calabi conjecture to obtain higher order esti-
mates of the curvature.

We will continue our study on the geometry of the moduli space and
Teichmiiller space in [I2]. The topics will include the goodness of these
metrics on the moduli space and the L?-cohomology and index theory of
these metrics and the Weil-Petersson metric on the Teichmiiller space,
and the convergence of the Kahler-Ricci flow starting from the Ricci
and the perturbed Ricci metric.

2. The Negativity of the Ricci Curvature
of the Perturbed Ricci Metric

In this section, we first study the curvature bounds of the Ricci and
the perturbed Ricci metrics. By using the Bers’ embedding theorem, we
then show that the injectivity radius of the Teichmiiller space equipped
with these metrics is bounded from below. This implies that both the
Ricci metric and the perturbed Ricci metric have bounded geometry on
the Teichmiiller space.

The boundedness of the curvatures of these metrics was obtained by
analyzing their asymptotic behavior. The proof of the negativity of the
holomorphic sectional curvature and Ricci curvature of the perturbed
Ricci metric is more delicate. Near the boundary of the moduli space
and in the degeneration directions, these curvatures are dominated by
the contribution from the Ricci metric which is negative. In the non-
degeneration directions and in the interior of the moduli space, these
curvatures are dominated by the contribution of the constant multiple of
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the Weil-Petersson metric when the constant is large which is also neg-
ative. However, we know that the curvature of the linear combinations
of two metrics is not linear, we need to handle the error terms carefully.

Let M, be the moduli space of closed oriented Riemann surfaces
of genus g with ¢ > 2 and let 7, be the corresponding Teichmiiller
space. Let M, be the Deligne-Mumford compactification of M, and
let D = M, \ M, be the compactification divisor. It is well known that
D is a divisor of normal crossings. In [11], we studied various metrics
on My and 7. We briefly recall the results here.

Fix a point p € M,. Let X = X}, be a Riemann surface corre-
sponding to p. Let z be the local holomorphic coordinate on X and let
81,...,5p be local holomorphic coordinates on M, where n = 3g — 3 is
the complex dimension of M. Let HB(X) and Q(X) be the spaces of
harmonic Beltrami differentials and holomorphic quadratic differentials
on X respectively and let A be the hyperbolic metric on X. Namely,

0,0zlog A = A\

By the deformation theory of Kodaira—Spencer, we know that the tan-
gent space T, M, is identified with HB(X) and the map T,M, —
HB(X) is given by

0 0 _

where A; = —3:(\710,,0zlog \). Similarly, the cotangent space TyM,
is identified with Q(X). For p = p(2)2 ® dz € HB(X) and ¢ =
©(2)dz? € Q(X), the duality between them is given by

(1, 0) = /X w(2)p(z) dzdz

and the Teichmiiller norm of ¢ is defined to be

el = [ 1o dzaz.
X
By using the above notation, the norm of the Teichmiiller metric is given
by

|pllr = sup {Re(u,¢) | [lollr =1}
peQ(X)

for all p € HB(X) = T, M,.
The Weil-Petersson metric on M, is defined by

hzj(p) = /XAZ'A]' dv
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where dv = —V;l)\dz A dZ is the volume form of X. The Ricci metric 7
is the negative Ricci curvature of the Weil-Petersson metric

Ti; = 818]—10g det(hkz)

By the works in [20] and [11], we know that the Ricci metric is complete.
Now, we take linear combination of the Ricci metric and the Weil—-
Petersson metric to define the perturbed Ricci metric

where C' > 0. In [11], we proved the following theorem:

Theorem 2.1. For suitable choice of large constant C, the holo-
morphic sectional curvature of the perturbed Ricci metric T has negative
upper bound. Furthermore, on Mg, the Ricci metric, the perturbed Ricci
metric, the Kahler—Einstein metric, the Asymptotic Poincaré metric are
equivalent.

This theorem was proved by using the curvature property of the per-
turbed Ricci metric and the estimates of its asymptotic behavior.

We recall here, our convention of the curvature of a Kahler manifold
(M™, g). Let z1,...,2, be local holomorphic coordinates near a point
p € M. The curvature tensor of the metric g is given by

2 _
o 9793 _ 1799iq 8gpj'
ikl 02,07 0z, 07
In this case, the Ricci curvature is given by

kl
R = —9" Rz = —0i0;log det(gy)

R

and we say the holomorphic sectional curvature of g is negative if R(v,v,
v,0) is positive for any non-zero holomorphic tangent vector.

Now, we prove several claims about the boundedness of the curvature
of the Ricci metric and the perturbed Ricci metric which were stated in
7).

Theorem 2.2. The holomorphic sectional curvature, bisectional cur-
vature and the Ricci curvature of the Ricci metric T on the moduli space

My are bounded.

As part of the Theorem 4.4 of [11], this theorem was roughly proved
in [11}]. Here, we give a detailed proof since we need the techniques later.

Proof. We follow the notations and computations in [I1]. Let p € D
be a codimension m boundary point and let (t1,...,tm, Smt1s---,Sn)
be the pinching coordinates of M, at p where ?1,...,%,, represent the
degeneration directions. Let X; s be the Riemann surface corresponding
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to the point with coordinates (t1,...,s,) and let I; be the length of the
short geodesic loop on the i-th collar. Let u; = 2l—;r We fix § > 0 and
assume that |(¢,s)| < 6. When § is small enough, from the work of [21]]
and [11], we know that

2
™ ™
" T logh) <”O<<log|ti|> ))

Now, we let ug =3 % u; + 370, 11 Isj.

By Corollary 4.2 and Theorem 4.4 of [11], the work of Masur in [15]
and Wolpert, if we use ]S%'Eki to denote the curvature tensor of the Ricci
metric 7, we have

1) 7 = 2z (14 O(uo)), i i < m;

2,2

2) Tﬁ_O(ﬁZﬂ(uz-Jruj)),ifi,jﬁmandi#j;
2

3) Ti;:O(%),ifigmandem—l—l;
2

4) 72.3:0 ?—;),ifjgmandiZm—l—l;

5) 7= =O(1), if i,5 > m + 1;

6) The matrix (Tij)
lower bound depending on p, n, J;
D 3ud o

) R = g (14 O(uo)), if i <m;

8) R:-=O(1),if i >m+1.

2111

is positive definite and has a positive

Now, we let

A = r:_Z\ i<m
1 t>m—+ 1.

We divide the index set into three parts. Let

1) Ay ={(,4,4,7) | i <m};

2) Ay ={(4,4,k,0) | at least one of 7,7, k,I < m and they are not all
equal};

3) Az = {(27]7 kal) ’ i, J, k0 >m+ 1}

By following the computations of [11], we know that, if (4,4, k,1) € As,
then
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Let v = 17+ +anz=— and w = by 7=+ - +by 52 be two tangent
vectors at (t,s). We have

|R(v,0,w,)| = | Y agbpbiRg| < >
Z'7j7k7l Z'7j7k7l
=L +1+ 13

aiajbkblRim

where I, = Z(i ) EA aiﬁjbkgl]%ﬁki‘. To estimate the norms of v and

w, we have

T(’U, U) = E aiaﬂﬁ + E aiaﬂﬁ + E aiaﬂﬁ

i,j<m,i#j 1<m<j Jj<m<i
2 _
+ E ‘CLZ’ T+ E 575
i<m ij>m+1

By using the asymptotic of 7 and the Schwarz inequality, we have

n

Z aiajTi;—i- Z aiaﬂifr Z aiajTij SO(UO)Z‘%PA?'

1,7 <m,i#£j i<m<j 1<m<i i=1

Since the matrix (Ti;) _— has a local positive lower bound, we know
i,J>m—+
there is a positive constant ¢ depending on p,n,d such that

n

n
Z a7 > CZ lai|® = ¢ Z lag|?AZ.
i=1

i,j>m4+1 i=m—+1
Finally, we have
3 m
S laifr = 51+ O(uo)) D lasf?A2
i<m i=1

By combining the above inequalities, we know there is another positive
constant ¢; depending on p,n,d such that

(2.1) T(,0) =1 Y ai*A7.
=1

Similar estimates hold for the Ricci norm of w.
Now, for each term in I, by using the Schwarz inequality, we have
aiajbkglﬁﬁki = O(UO)’aiajbkElAiAjAkAl‘
< O(uo)(|ai| A7 + |a; [P A7) ([bx AT, + b |*A7).
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So, we have

I, = O(ug) (Z |ai|2A?> (Z |bi|2A?> < ¢or(v,v)T(w, w)
=1

i=1
for some positive constant ¢g. By enlarging this constant, we also have

<0(1) Y l|adbb| < 0(1)< > |al-|2A12> < > |bZ-|2A?>

(Zvjvkvl)EAS i=m-+1 i=m-+1
< co7(v,v)T(w, w)

and
m

3 217 12 A4
L=g5(+ O(u)) Y lail*[bil*Af < co (v, v)7(w, w).
i=1
By combining the above inequalities, we know that there is a positive
constant ¢ depending on p,n,d such that if § is small enough, then

|R(v, 7, w,w)| < &r (v, v)T(w,w).

So, we have proved that for each point p € D, there is an open neigh-
borhood U, such that the bisectional curvature of the Ricci metric is
bounded by a constant which depends on U),. Since D is compact, we
can find a finite cover of D by such U,. Let U be the union of the charts
{U,} in this finite cover. Then, we can find a universal constant ¢ which
bounds the bisectional curvature at each point in U. Since M, \ U is a
compact set, we know the bisectional curvature is bounded there. So,
we proved that the bisectional curvature of the Ricci metric is bounded.
The boundedness of the holomorphic sectional curvature can be
proved similarly if we replace w by v in the above argument. Finally,
since the Ricci curvature is the average of the bisectional curvature and
the holomorphic sectional curvature, it is bounded. We finish the proof.
q.e.d.

We now investigate the curvatures of the perturbed Ricci metric. We
have

Theorem 2.3. For any constant C' > 0, the bisectional curvature of
the perturbed Ricci metric T = 7 + Ch is bounded. Furthermore, with
suitable choice of C', the holomorphic sectional curvature and the Ricci
curvature of T are bounded from above and below by negative constants.

Proof. We use Rz’}ki and Pijk-i to denote the curvature tensor of the
Weil-Petersson metric and the perturbed Ricci metric respectively. We
use the same notations as in the proof of the above theorem. Let p € D
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be a codimension m boundary point, let (¢, ..., s,) be the local pinching
coordinates and let Ay, Ay, A3 be the partition of the index set. Assume
J is a small positive constant and |(t,s)| < d.

By Corollaries 4.1, 4.2 and Theorem 5.2 of [11], we have

1) s = ik (2 + 40w) (1+ O(uo)). if i < m:

2
u2u2
2) 75 = |tit]]| (O(u; + uj) + CO(uuy)), if i, j < m and i # j;
2
3) T = %(O( )+ CO(w;)),ift <mand j >m+1
2
4) %if = ‘—;‘(O( )+ CO(uy)), if j <m and i >m+ 1;
1 4 5
_ 9 272 Cul Uy 3C Uy
5) Py = 1607 — 1o (1 T ) > AT 4) (14+0(uo)),
if 1 <m;

6) Pﬁﬁ = O( ) + CRzuz’ if 7 > m+ 1

7) Py =O0() + CRgy, if (i,5,k,1) € As;

8) ngi = O(AZAjAkAl)O(uO) + CRiij’ if (i,j, k, l) € As
where all the O-terms are independent of C.

Let v and w be holomorphic vectors as above. To estimate the bisec-
tional curvature, we have

(2.2)
m
Po,7,w,)| < 3l biPPaz+ Y. |eiabibiPyg
i=1 (i,4,k,l) €Az
+ Z aza]bkblpjkl‘

(4,5,k,1)EA3

<D lailbil* Pz +Ouwo) Y |asasbpbidifjAgA]
=1 (’i,j,k,l)EAQ

+C Z ‘aﬁjbkERim‘ + O(l) Z |aiajbk51|
(2,5,k,1)€A2 (i,5,k,)€A3

+C Z ‘aﬁjbkERim‘ .
(i,4,k,l)€A3

Let ¢; denote certain positive constants only depending on p,n,d. By
the proof of the above theorem, since 7 > 7, we have

(2.3) O(ug) Z |ai@jbpbiAiA AN || < cor(v,v)7(w, w)
(i,j,k,l)eAg
< o7 (v,0)T (w, w).
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We also have

(2.4) 0(1) Z |a;a;brbi|| < 17 (v, v)7(w, w)
(i,j,k,l)GAg
< o7 (v, 0)T (w, w).

Now, we estimate 7(v,v). By using similar argument as in the above
proof, we know that

n
T(,0) > 2 Y ai* T
i=1

So for i < m, we have

9 2m2Cu;\ T\ ud

9 9 2 7 2

210,12 P- - = |ag]?|bs 1

‘CL ‘ ‘ ’ 2211 ’a ’ ’ ‘ <167T4 167‘(‘ < * 3 > ) |ti|4
5

= 14)<1 +O(u))

2
u 3 ~
S c;;\az\ ‘b1’2 |t |4 ( + CUZ) S 64]ai\2]bi]272%

which implies

m
(2.5) > lail[bi*Py;; < C5Zyazy i *72 < c67 (v, v)7T (w, w).

; =1
To estimate the remaining two terms in the right-hand side of (2.2), we
need the estimates of the curvature tensor of the Weil-Petersson metric
which is done in the proof of Corollary 4.2 of [11]. By collecting the
results there, we know that Rz7 = O(AiAjARA)O(uo) if (i, k,1) € Az
and Rz = O(1) if (i,7,k,1) € A3. By using a similar argument as in
the above proof, we know that

(2.6) c >

(4,5,k,1) €Az

aidjbkElRim‘ < 7 CT(v,0)T(w, w)

and

(2.7) c >

(ivjvkvl)€A3

aiﬁjbkEZRﬁkz‘ < esCT(v,0)T (w, w).

These imply that
|P(v,7,w,w)| < (cgC + c10)7 (v, v)T(w,w).
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By using the compactness argument as above, we proved that the bisec-
tional curvature of 7 is bounded. However, the bounds depend on the
choice of C.

By using a similar method, it is easy to see that the holomorphic sec-
tional curvature is also bounded. However, in [11}], we showed that, for
suitable choice of C', the holomorphic sectional curvature has a negative
upper bound. So for this C, the holomorphic sectional curvature of 7 is
pinched between negative constants.

Finally, we consider the Ricci curvature of 7 = 74+C h. We first define
two new tensors. Let }?M Py — CRzyy and let Py = —Ric (wz),5.
We only need to show that there are posmve constants a1 and g which
may depend on C' such that

25 o (7) < (Pg) < 0 (7).

Based on Lemma 5.2 of [11] and by Corollaries 4.1 and 4.2 of [11],
we can estimate the asymptotic of the perturbed Ricci metric.

Lemma 2.1. Let p € Mg \ My be a codimension m boundary point
and let (t,s) = (t1,...,8,) be the pinching coordinates. Let § > 0 be a
small constant such that |(t,s)| < 6. Let C be a positive constant. Let

B, = (T.—.) et By = (hA—} and let B = By + CBy. Let
B 1) i>m—+1 )i i>m+1
(Bij) = (B~1) and let x; = 272Cu; for i < m. Then, we have
1) 77 = o AL (3+2:)(1+O0(ug)) and 7 = 4n?A72(3+ ;)" (14 O(up))
if i < m;
u2u? T .
2) 75 = g1 (O(ui + uj) + CO(uiuy)) and 77 = O([tit;|) min{(1
i) (L)t if i, 5 <moand i # j;
2 =
3) 75 = 7(0(1) + CO(w;)) and 77 = O(|ts|)(1 +25)~" if i < m and
j=zm+1;
4) T, TG =T+ Ch* and 79 = 1 (hij +0(C7Y) + O(uo)> if 1,5 >
m—+1;

5) ]Eijki = O(NiNjALA)O(wg) if (4,7, k1) € Aa;
6) Ry =O0) if (i,],k,1) € As.

Proof. Let a = a(t1,t1,...,8n,8,) and b = b(t1,t1,...,Sn,S,) be any
local functions defined for |(¢, s)| < 0. Assume there is local constant ¢;
depending on p,d and n such that

0<cr <a,b
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for |(t,s)| < 6. We first realize that there are constants p; > 0 depending
on ¢y, p, n and ¢ such that

1+ 2; < pila+ COb)

27r ul

for |(t,s)| < 4. In fact, we can pick p; = max{ Cl
when ¢ is small.

The first four claims followed from Corollaries 4.1, 4.2, Lemmas 5.1
and 5.2 of [11]. By the proof of Lemma 5.2 of [11], we have the linear
algebraic formula

} since w; is small

moA2
det(7) = (H 4Aﬂf2 (3+:ci)> det(B)(1 + O(uy)).

i=1

These claims followed from similar computations of the determinants of
the minor matrices.

The last two claims follow from the same techniques and computa-
tions as in the appendix of [11. q.e.d.

Now, we estimate P[ We first compute P; with ¢ < m. We have

Py =FPgt+ Y. TP
(k,0)#(i,7)
- B il
= ”Pﬁﬁ Z T Rz +C Z T Rz
(k,0)#(4,7) (k,0)#(4,7)

We estimate each term in the right-hand side of the above formula. We
have

9 3 x;\ —1L
~i 2 —1 ? 4

3916Z

A4><1 1 O(u)
— %A?(S +ay) ! <3 - (1 + %>_1 + $z> (14 O(uo))

= % (1 — ﬁ) AZ(1 + O(up)).

By the fifth claim of the above lemma, we have

(2.10) Yo HRay| = 0(ANO(uo).
(k,1)#(4,1)
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We also have
¢ Z NklRﬁkl =C Z NklRukl +C Z 7A:]m‘Rmkz +C Z ?Zlegzl
(k,1)#(i,9) ki, 1#£i k#i 1#i
By the proof of Corollary 4.2 of [11], we know that, if k& # 4, then
5
R =0 (#) O(Ag). By combining with the above lemma, we have

(2.11)
Fhi 3\ A2 VL= T A2002) = A20(u2
O YA Rigs| = COWPHA L+ )™ = T ATO(u) = AO(u?).
k#1
Similarly, we have
(2.12) CY F'Ryy| = AO(u}).

1#1

Now, we fix i and let v = 8%’ w = b1%+---+bn% with b; = 0. Since
the bisectional curvature of the Weil-Petersson metric is non-positive,
we have
0 < R(v,7,w, W) Z bkblR”kl
k#1, 1#1
This implies that the matrix (Rﬁk-i) Kot I is semi-positive definite. So,

~kl
> TRz =0
ki, I#i
since it is the trace of the product of a positive definite matrix and a
semi-positive definite matrix. Again, by using the proof of Lemma 4.2

of {11}, we have

(2.13) 0<C Y Ry <wA20H(1)
ki, 1£i

we know

where O (1) represents a positive bounded term. By combining formu-
las (29), @10, G.11), (£12) and (2.13), we have
3 3 ) 2 2 2
P 3 (1= o ) A2+ Olun)) + A2O(ua) + A202)

and

3 3
PZ < — ) <1 — m + II?ZOJF(l)) A?(l + O(uo))

+A70(uo) + AJO ()
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which imply

R 3 3A? 3
2.14 L]l —— ) <P <2 (1—-———— +7,07(1
2 87r2( <3+xi>2) - “—W( Brap ”)

when ¢ is small. The above estimate is independent of the choice of C.
Now, we estimate P;; with 7, j < m and ¢ =% j. We have

(2.15)

_klp_ =kl 73 ~kl
Ps = ]Dz]kl Rz]kl+CT Rzgkl

~kl D ~kk ~kl B
=T Rzﬂcl + c Z T Rmkk + C Z T Rﬁkl
k<m k,<m, k#l

+C > 7 ~“R”kl+(] o7 ~’“R”,ﬁﬁc > N’de,d

k<m<l 1<m<k kJl>m~+1

By the above lemma, we have
(2.16) (%’d}zﬁkz‘ = AiA;O(ug).

We also have

~kk ~hk ~ ~
cY Rl <o Y R -l—‘CT”RU“ \CTNRM(
k<m k<m,k+#i,j
- 5,3
By the proof of Lemma 4.2 of [11], we have R;;; = O (7;3:: ) which
implies
ulu’
CF'R=| = 47°A72(3 + 2;) 'CO | = | = AyA;0(ug)
1511 4 i ‘t3t“ id\j 0)-
it

Similarly, we have

ijjJ
Again, by the proof of Lemma 4.2 of [11], for k < m and k # i, j, we

have
ulu]uk
R-7-=0
ik (\tzt 2" >

which implies

k<m,k#i,j
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By combining the above three formulas, we have

C Y2 P i) = AijO(w).

k<m

Similarly, we can show that

C Y PRzl = A O(u),
kl<m, k£l

k<m<l
and

I<m<k
Finally,

¢ S ARrogl< Y (C?’“z\ (ngz(

k,l>m+1 k,l>m+1

k,>m+1

By combining the above results, we have

By using the same method, we know that, if ¢ < m < j, then
(2.18) Pz = A;O(uo)

and if j < m < i, then

(2.19) P = A;O(up).

The next step is to estimate the matrix (P;5); j>m+1. We will show
that this matrix is bounded from above and below by positive constant
multiples of the matrix By defined in the above lemma where the con-

stants depend on ¢ and C'. We first estimate P; with fixed 7,7 > m+1.
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We have

_~klp _ ~klp ~klp
Pz’j = Pijkl = Rijkl +C7 Rz’jkl

- Z %kEﬁijkE + Z %kiﬁijki

k<m kJl<m, k#l
~klp ~kl D
+ Z T Rﬁkl—k Z T Rﬁkl
k<m<l 1<m<k
~klp ~kkp _ _ ~klp _ _
kI>m+1 k<m kl<m, k#l
~kl B ~klp ~klp
+C Z T Rz +C Z T R+ C Z T Ry
E<m<l I<m<k E>m4+1

By Lemma 2.1t and the proof of Corollary 4.2 of [11], we know that

~kk D ~kl D>
Z T RZ}k% = O(UO), Z T ngz = O(Uo),
k<m k,l<m, k#l

> %klﬁim =O0(w), | %’dﬁzﬁkz = O(up),

k<m<l I<m<k

3 %’dﬁim =oc™), ¢ Y %’ffRﬁ,J = O(up),
kl>m+1 kl<m, k#l

and

Y ?kiRim =O(uw), |C Y ?kiRim = O(up).

k<m<l 1<m<k

Also, since for 4,7, k,l > m + 1, Rz’}ki = O(1), we have

C > Ryg= > MR +0(C7) 4 Ou).
kl>m+1 k)lzm+1

By combining the above arguments, we have
~kk kl -1
(220) Py;=CY 7 Roz+ > BB+ 0(C7Y) + O(ug).
k<m k,>m+1

The matrix (Zk,l2m+1hk1Rijki(ov 5))i,j2m+1 is just the negative of the
Ricci curvature matrix of the restriction of the Weil-Petersson metric to
the boundary piece. So, we know it is positive definite and is bounded
from below by a constant multiple of Bs(0,s). By continuity, we know
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that, when ¢ is small enough, the matrix (32, ;5,417 Rz(t, S))i,j2m+1
is bounded from below by a constant multiple of Bs(t, s). Again, since

hMRz‘jki = O(1) when 7, j, k,I > m+1 and the fact that matrices B; and

By are locally equivalent, we know that (Z kd>m1 hklRijk-Z)i,jzm 4118
locally bounded from above and below by positive constants multiples
of Bl.

Finally, by using the fact that the bisectional curvature of the Weil—
Petersson metric is non-positive and 7% > 0, we know that the ma-
trix (?kkRﬁkE)iQmH is positive semi-definite. Also, we know that

C Zkzgm ?kkRz‘jkE = O(1).

Now, by using formula (2.20), we know that there are positive con-
stants 1 < (2 depending on ¢, the point p and the choice of C such
that as long as ¢§ is small enough and C' is large enough,

(2.21) 1By < (PZ;> } < (2B;.
i,5>m+1

We know that there is a constant ¢y > 0 such that h < ¢g7 which
implies 7 < 7 < (1 4 ¢C)7r. By combining formulas (2.14), 2.17),
(2.18), (2.19) and (2.21), we know that, when § is small enough and C
is large enough, there are positive constants a; < as depending on p, §
and C such that

Oél?g (PZE) < CM27A:.
Now, by using the compactness argument as we did before, we can find
an open neighborhood U of D in ﬂg and a Cy > 0 such that

Oél%/ S (.Pg) S 042?

on U for positive constants oy and as as long as C' > Cj.

Let V.= M, \ U. We know V is compact. We also know that, for C
large enough,

Ric (7) = Ric (C™'7) = Ric (h + C717).

Since the Ricci curvature of the Weil-Petersson metric has a negative
upper bound, a perturbation of the Weil-Petersson metric with a small
error term still has negative Ricci curvature on a compact set V. Also,
on V, the perturbed Ricci metric is bounded. So, for C' large, we know
that the Ricci curvature of the perturbed Ricci metric is pinched be-

tween negative constant multiples of the perturbed Ricci metric. Here,
the bounds depend on the choice of C'. This finished the proof. q.e.d.

As a direct corollary of the above theorem, we show a vanishing the-
orem similar to the work of Faltings [4].
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Corollary 2.1. Let D be the compactification divisor of the Deligne—
Mumford compactification of Mgy. Then,

HY (M, (log D)*) = 0.

Proof. We first pick a constant C' > 0 such that the Ricci curvature of
the perturbed Ricci metric 7 = 7+ Ch is pinched by negative constants.
Let o be a holomorphic section of 2 (log D)*.

Let p € W\Mg be a codimension m point and let (t1,...,tm, Sm+1,
..., Sn) be local pinching coordinates. Then, locally, we have

- 0 - 0
o= Zai(t,s)tia—ti + Z aj(t,s)a—sj
=1 j=m+1
where a; are bounded local holomorphic functions for 1 < i < n. It is
clear that, restricted to Mg, o is a holomorphic vector field. Now, we
equip the moduli space M, with the perturbed Ricci metric 7. From
the above expression of g, it is easy to see that

lollz € L*(Mg,7)

since T is equivalent to the asymptotic Poincaré metric. Now, we have
the Bochner formula

Aslofl2 = Vo2 - Rics (o, 0).

To integrate, we need a special cut-off function. In [13], a monotone se-
quence of cut-off functions p. with the properties that Azp. is uniformly
bounded for each € and the measure of the support of Azp. goes to 0 as
€ goes to zero. We will recall the construction in the next section.

By using the cut-off function p., we have

tim [ peol2dvs =ty [ ApdolEavi =0
e—0 M, e—0 My

since o is an L? section with respect to 7 and the measure of Axp, goes to
0. This above formula implies Ric (o,0) = 0. Since Ric (7) is negative,
we know that ¢ = 0. Thus, we have proved the corollary. q.e.d.

Finally, we show that the Teichmiiller space equipped with the Ricci
metric or the perturbed Ricci metric has bounded geometry.

Corollary 2.2. The injectivity radius of the Teichmiiller space equipped
with the Ricci metric or the perturbed Ricci metric is bounded from below.

Proof. We only prove that there is a lower bound for the injectivity
radius of the Ricci metric since the case of the perturbed Ricci metric
can be done in the same way.
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In Theorem 2.2, we showed that the curvature of the Ricci metric is
bounded. We denote the sup of the curvature by §. If 6 < 0, then the
injectivity radius is 400 by the Cartan-Hadamard theorem. Now, we
assume 6 > 0.

Assume the injectivity radius of (7, 7) is 0, then for any € > 0, there
is a point p = p. such that the injectivity radius at p is less than e.

Let f, be the Bers’ embedding map such that f,(p) = 0. By using a
similar argument as in the proof of Theorem 7.1 in [11], and by changing
some constants, we know that the Ricci metric and the Euclidean metric
are equivalent on the Euclidean ball By C f,(7,). By using the Rauch
comparison theorem to compare the Ricci metric on the ball By and
the standard sphere of constant curvature §, we know that there is no
conjugate point of p within distance € when € is small enough.

So, the only case we need to rule out is that there is a closed geodesic
loop v containing p such that [;(7) < 2e. We know that when € small
enough, v C Bj since the Ricci metric and the Euclidean metric are
equivalent on B;. This implies that the Euclidean length of v, denoted
by I(7), satisfies I(y) < ce for some constant ¢ only depending on the
comparison constants of the Ricci metric and the Euclidean metric on
By. Tt is clear that v bounds a minimal disk » with respect to the
Euclidean metric. By the isoperimetric inequality, we know that the
Euclidean area Ag(X) satisfies

Ap(2) < al(7)? < er?é.

By using the equivalence of the metrics, we know the area AT(i) of the
surface & under the Ricci metric is small if € is small enough. Thus, v
bounds a minimal disk ¥ with respect to the Ricci metric.

Now, we show that the minimal disk ¥ C Bi as long as € is small

enough. Without loss of generality, we assume thzit the injectivity radius
of the Ricci metric at 0 is € > 0. By the work of Cheng, Li and Yau
[2], we know that there is a positive constant a which depends on the
dimension and the curvature bound of the Ricci metric such that, when
g€ B 1 then the injectivity radius of the Ricci metric at ¢ is at least

ae. We may assume a < 1.

If there is a point s € E\B%, then we can pick a curve p € ¥ joining 0
and s. We can assume that p C By. Since the Ricci metric is equivalent
to the Euclidean metric inside By, we know that there is a constant
a; > 0 such that d,(0,s) > a;. Thus, we can pick k points sq,..., Sk

in pN B%ﬂm such that d.(s;,s;) > 2ae. From the above argument, we

know that k ~ %2 for some az > 0. Now, we let Bj, (ac) be the geodesic

ball for the Ricci metric whose center is s; and radius is ae. By our
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construction, we know that By, (ac) N B, (ac) = (. Now, by using the
isoperimetric inequality, we have
A+ (Bs,(ae) NY) > aza’e

where ag only depends on n and the curvature bound of the Ricci metric.
Thus, we have

k
A-(SNBy) > > Ar(Bs,(ae) NT) > kaza®e® ~ aye.
=1

However, we have
A(ENBy) < A,(3) < A (3) < asAp(E) ~ age’.

This is a contradiction as long as € is small enough. Thus, > C B:.

Now, by the Gauss—Codazzi equation, we know that the curv?ature
Rs of the metric on ¥ induced from the Ricci metric is bounded above
by §. By using the isoperimetric inequality, we know that

AL (D) < e

However, by the Gauss—Bonnet theorem, since the geodesic v has at
most one vertex p and the outer angle 6 at p is at most 7, we have

/Rg d’UT—l—/mY ds+ 0 =2mx(X) =27
X ol

where dv; is the induced area form from the Ricci metric. Since 7 is a
geodesic, we see that the second term in the left-hand side of the above
formula is 0. Since Ry, < ¢ and 0 < 7w, we have

5AT(E)Z/R2 dv, =2r—60 >
)

which implies A;(¥) > %. Contribution of the curvature created by
branch points will make the inequality better. Thus, by comparing
the above two inequalities, we get a contradiction as long as € is small
enough. This finishes the proof. q.e.d.

S

The technique in the proof of the above corollary is of interest by
itself. We summarize two more corollaries to the above argument in
the following two propositions which may be used for other problems
related to injectivity radius.

Proposition 2.1. Let (X", g) be a Riemannian manifold and let
U C X be an open set. Assume that there is a diffeomorphism f :
U — By C R"™ where By s the open unit ball. Let g, be the metric on
U which is the pullback via f of the Fuclidean metric on R™. Assume
that the curvature of g is uniformly bounded on U. If g is equivalent
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to g, on U, then the injectivity radius of the metric g at each point in
f~Y(B1) C U has a lower bound which only depends on the dimension
2

n, curvature bound of g and the equivalence bound of g and g, .

Proposition 2.2. Let (X", g) be a Riemannian manifold and let
p € X be a point. Let B, be the geodesic ball in X with center p and
radius v. We assume that the curvature of g is uniformly bounded on
By. Then, there is a €g > 0 which only depends on n and the curvature
bound of g on By such that if any simple closed curve v in By with length
() = € < €y bounds a disk $ such that Ay(X) < Ce' ™ where C,a0 > 0
are fived constants, then the injectivity radius of g at each point ¢ € B1

2
has a uniform lower bound which only depends on the n,C,« and the
curvature bound of g on Bj.

3. The Stability of the Logarithmic Cotangent Bundle

In this section, we investigate the cohomology classes defined by the
currents w, and wxg. Since both of these Kéhler forms have Poincaré
growth, it is natural to identify them with the first Chern class of the
logarithmic cotangent bundle of Mg. This implies this bundle is posi-
tive over the compactified moduli space which directly implies that the
moduli space is of log general type.

The next step is to show that the restriction of the Kahler—Einstein
metric to a subbundle of the logarithmic cotangent bundle will not have
growth worse than Poincaré growth. Then, we prove that the loga-
rithmic cotangent bundle E over ﬂg is stable with respect to the first
Chern class of this bundle.

More precisely, we have the following theorem:

Theorem 3.1. The first Chern class of E is positive and E is Mum-

ford stable with respect to c¢1(E).

Remark 3.1. We recall that both M, and Mg are orbifolds and the
bundle E over Mg is an orbibundle. To define the stability, we need to
define the degree of a bundle which only involves the first Chern class
of this bundle. We know that the singular locus (orbifold points) on
M, and ﬂg are at least codimension two and M, has a finite cover
which is smooth. Thus, when we deal with the first Chern class of a
bundle F' by representing it by the Ricci form of a metric on F' locally
near a point p, we can work on the local manifold cover (finite cover) of
a neighborhood of p. In this case, ' becomes a vector bundle locally,
rather than an orbibundle. We then take the quotient to go back. In the
following, when we work locally, we will always work on a local manifold
cover without further mentioning.
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We first setup our notation. On My, let g,, 7, 7, g,,,, and g, be
the asymptotic Poincaré metric, the Ricci metric, the perturbed Ricci
metric, the Weil-Petersson metric and the Kéhler—Einstein metric re-
spectively. Let w,, w; and w,, be the corresponding Kahler forms of
these metrics. Let Ric (w;) be the Ricci form of the Ricci metric.

Let D = Mg \ M, be the compactification divisor. In order to prove
the stability, we need to control the growth of these Kahler forms near
D. We fix a cover of M, by local charts.

For each point y € D, we can pick local pinching coordinate charts
Uy, C U, centered at y with U, = (Agy)my X Agy_my and U, = ( %y)my X

Aggymy such that the estimates in Corollaries 4.1, 4.2, Theorems 4.4 and

5.2 of [11] hold on ﬁy. Here, A, is the disk of radius 6, > 0 and A} is
the punctured disk of radius ¢, and m, is the codimension of the point
y and n = 3g — 3 is the complex dimension of M,.

Since D is compact, we can find p such charts Uy = Uy, ..., U, = Uy,
such that there is a neighborhood V; of D with D c Vy C V) C UleUi.
Now, we choose coordinate charts Vi,...,V, such that the estimate of
Theorem 5.2 of [11] holds and

1) M, C <U§:1Uj) U (U?:M’);
2) (VI_yV;) N Vo = 0.

Let 91,...,%p4q be a partition of unity subordinate to the cover Uy, ...,
Up, V1,..., Vg such that supp (¢;) C U; for 1 < i < p and supp (¢;) C
Viepforp+1<i<p+q.

Let o = my, and let ti,. .. 7t2w 53i+17 ..., 8% be the pinching coordi-
nates on U; where ¢4, ... ,tgi represent the degeneration directions.

To prove the theorem, we need a special cut-off function. Such a
function was used in [13]. We include a short proof here since we need
to use the construction later.

Lemma 3.1. For any small € > 0, there is a smooth function pe such
that

1) 0<pe <1

2) For any open neighborhood V' of D in ﬂg, there is a € > 0 such
that supp (1 — p.) C V;

3) For each € > 0, there is a neighborhood W of D such that p. |w= 0;

4) pe > peif € <€

5) There is a constant C which is independent of € such that

—Cw, < V/=199p, < Cwy,.
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Proof. We fix a smooth decreasing function ¢ € C°(R) with 0 < ¢ <

1 such that
(@) 0 z>1;
€T =
7 1 z<0.
Now, let
—1
(log |—i|> —€
Pe(z) = | ———F—
¢ €
For 1 <i < p and € > 0 small, we let
a;
OLth, - osh) =[] (1 = ee(t)).
j=1

The cut-off function is defined by

P
pe=1— Z ¢z§01
i=1
It is easy to check that p. satisfy all the conditions. q.e.d.

Now, we discuss the logarithmic cotangent bundle. Let Uj,...,V,
be the cover of M, as above. For each 1 < i < p, let W; = Ag?i X

A?;myi. Then, Wi,...,W,, Vi,...,V, is a cover of M,. On each U;, a
local holomorphic frame of the holomorphic cotangent bundle T M, is
dtli, e ,dtgi,dséﬁl, .., dst . Let

. 1 < Qi
(3.1) =41 =W
dS;- j > o+ 1.

The logarithmic cotangent bundle E is the extension of T*M,g to ﬂg
such that on each Uj, €},..., ¢! is a local holomorphic frame of E. It
is very easy to check this fact by writing down the transition maps.
In the following, we will use g;,,, 7" and g} . to represent the metrics
on E induced by the Weil-Petersson metric, the Ricci metric and the
Kahler-Einstein metric respectively.

To discuss the stability of E, we need to fix a Kéhler class on M. It
is natural to use the first Chern class of £. We denote this class by ®.
We first identify the current represented by the Kéhler form w,., with ®.
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Lemma 3.2. The currents wy and w,.,, are positive closed currents.
Furthermore,

[WT] = [wKE] = Cl(E)'

Proof. It is clear that w; and w, ., are positive currents. Let ¢ be an
arbitrary smooth (2n — 3)-form on M,. To show that w,, is closed, we
only need to show

(3.2) / Wy p Nde =0.
My
We first check
63) | e ndel = [ o Adol < oo
Mg Mg

To simplify the notations, on each U;, we let té- = s} fora; +1 <75 <n.
On each U;, we assume
dp =" al gt} Nd - N dEL A dE - A dEy AdE - A dE, A d,
a7ﬁ

where agg are bounded smooth functions on U;. We denote dt} /\dﬁ- <A

dt’, Adti by dt' Adti. By [11], we know that the Kéhler-Einstein metric
is equivalent to the Ricci metric and the asymptotic Poincaré metric.
By using Corollary 4.2 of [11], we know that, restricted to each U;, there
is a constant C' depending on ¢ such that

-1\" i i N T
o el < (Y5 ) S |(Gn) ]t n
a7ﬁ

§<_V )c Y 1|t Adt

2 12 ;
¢ (log ¢ )

since aiﬁ is bounded on U;. This implies

J=1

/ ¢i|wKE A d90|
U;

g/m(E)nC Zi%—kl dt' A dt < .
Ui 2 (log )

i—1 | i
j t] t]
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So, we have

q p
| e ndd <37 [ wrplos ndel+ Y [ bl Adel < o0,
My j=1"Vi j=1"Uj

Let pe be the cut-off function constructed above. By the dominating
convergence theorem, we have

(3.4) / Wep Ndp = hm P N dep.
Mg Mg

Let h be an Hermitian metric on E. Let Ric (h) = —0dlog det(h) be its
Ricci form. Clearly,

[Ric (h)] = c1(E)

and

lim peRic (h) A dp = / Ric (h) A dy
e—0 My My

_ /_ Ric (h) A dy = — /_ d(Ric (h)) A ¢ = 0.
My My

Since w,, = —09logdet(g% ), we have

(3.5) /M Wiy Ndp = lg% " Py N dyp

g9 g

= lim Py N dp — hm peRic (h) A de

e—0 M, M,
— det(h
= lim p00log (L*)) A dp
e—0 My det(gKE)
det(g;E)

— 1 log [ —~IxE) ) 57, A dp.
0 Jpn, °g< det(h) >8apA ?

By using the frame in (3.1), by Theorem 1.4 and Corollary 4.2 of [11],
we know that there are positive constants C; and Cy which may depend
on ¢ such that, on each Uj,

det(g* Z
¢ < dot(h KE CQH log ‘t

which implies that there is a constant Cg such that

det(g% ) - 1
. — || < —
(3.6) '1og( aet(h) )‘ _Cg+2210g10g
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Now, by Lemma 8.1, we can pick €y small enough such that for any
0 < € < €, supp (1 — pe) C Vh. We also know that supp (00pe) C
supp (1 — pe). Again, by Lemma 8.11, since

—Cuw, < 85p6 < Cuwyp,

we know that there is a constant C4 which depends on ¢ such that

(3.7) |00pe N dyp| < (g) Ca Z% +1 | dt' A
té- <log t;)

By combining (3.6) and (3.7), and a simple computation, we can show
that

(3.8) /U |

From the above argument, we know that

det(g* )) _
log [ —2£= ) 9dp A d
/Mg © < det(h) ) P
det(g* )\ =
= log (7I(E> 00pe N dp
‘ /Mgﬂsupp (89pe) det(h)
p d t * _
SZ/ 5 |log <M> 88peAd¢‘ -0
=1 UiNsupp (1—pc)

det(h)
as € goes to 0 because of (3.8) and the fact that the Lebesgue measure
of U; N'supp (1 — p.) goes to 0. By combining with (3.5), we know that

/ W Ndp =0
M

g

Jj=1

det(g% )\ .=
log <W) 00pe N\ dp| < 00.

which implies w,., is a closed current. Similarly, we can prove that w,
is a closed current by the formula

wr = —001log det (g, )

and Corollary 4.1 and 4.2 of [11].

Now, we prove the second statement of the lemma. Since w,, is a
closed current, to show it represents the first Chern class of E, we need
to prove that for any closed (n — 1,n — 1)-form @ on M,

(3.9) [ wwns=[ a@nz

g g9
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However, this can be easily proved by using the above argument where
we replace dy by . The same argument works for w,. This finishes the
proof. q.e.d.

Now, we compute the degree of E. In the following, by degree of a
bundle over M, we always mean the ®-degree.

Lemma 3.3. The degree of E is given by fMg w"

Proof. Since the degree of E is given by
des(E) = [ a(E) iy,
M,

we need to show that

(3.10) /m (B Awt = / S
g Mg

By the property of the asymptotic Poincaré metric, we know that

(3.11) / wy, < 0o.
Mg

Since the Kéahler-Einstein metric is equivalent to the asymptotic Poin-
caré metric, we know that [, w? < oco. Also, since ¢;(E) is a closed
g

(1,1)-form on M, which is compact, we know that any representative of
c1(E) is bounded on M,,. This implies there is a constant Cj such that

—Cswy < ¢1(E) < Csw,. This implies that UM c1(E) /\w?{gl < 0.
By using the notations as in the above lemma, we have

(3.12) /_ c1(E) /\wﬁ;l —/ wr
My My

_ / (e1(E) — wyop) AL
M

g

= lim pe(c1(E) —w,p) Aw™ !
e—0 M,

= lgr(l] peﬁalog( gKE > szEl
det(g*
= lim log( KE))@@pe/\w
e—0 M, (h)

t *
= lim H95cp)

log <7> 00pe Aw™ 1
<=0.J Mynsupp (99pc) det(h) KE
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Now, we show that

det(g* )
3.13 log ——=EBEZ| )" .
(3.13) Mg'og det(h) |“r =%
Since
det(g* detg )
1 KE i KE n
o oG =3, oo i
i) | m
+Z/ wp‘f'] gd t( ) p

and Vj lies in the compact set M\ Vp and 0 < ¢; < 1, we only need to
show that
(95cx)

(3.14) /UZ log det(n)

We know that there is a constant C; such that, on U;,

H |tz|2 10g |tz

Formula (3.14) follows from the above formula, inequality (3.8) and a
simple computation.

Now, we pick € small such that supp (09p.) C supp (1 —p.) C Vy. By
Lemma 5.1, we know that there is a constant C' such that

—Cuwp, < 85,0E < Cuwy

n
wp<OO.

and
0 <wgp < Cuwp.

So, we have

/ lo < ics > DOpe N W'
Mnsupp (p) det(h

p
gcnz/ 1og< gm>
U;Nsupp (1—pe)

as € goes to 0 because of inequality (3.14) and the fact that the Lebesgue
measure of

w—>0

Ui Nsupp (1 — pe)

goes to 0. By combining with formula (3.12) we have proved this lemma.
q.e.d.
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Now, we define the pointwise version of the degree. Let F' C E be
a holomorphic subbundle of rank & < n. Let g% |r and h [r be the
restriction to F' of the metrics induced by the Kéhler—Einstein metric
and the metric h. Let

(3.15) d(F) = —99dlogdet(g" , |F) Aw 1.
Here, d(F') is an (n,n)-form. It is clear that

deg(F) = [ ()
My
when the integration converges. )
The following result is well-known. Please see [T for details.

ol

Lemma 3.4. For any holomorphic subbundle F of E with rank k,
we have

AF) _ d(E)
kK~ n
Now, we prove the main theorem 3.7

Proof. Let F be a holomorphic subbundle of E of rank k. We first
check that [ M, d(F) is finite and equal to the degree of F. To prove

that fMg d(F) is finite, we need to show that —00logdet(g* . |r) has
Poincaré growth. This involves the estimate of the derivatives of the
Kahler-Einstein metric up to second order. Our method is to use
Lemma 3.4 together with the monotone convergence theorem and in-
tegration by parts to reduce the C? estimates of the Kihler-Einstein
metric to C? estimates.

By Lemma 3.1, we know that p. is monotonically increasing when e
is monotonically decreasing. Also by Lemma 8.4, we know that

gw;E —d(F) = %d(E) —d(F) > 0.

(3.16)

By the monotone convergence theorem, we have

(3.17) lim P <§ng - d(F)) = /Mg (gng - d(F)) .

By Lemma 8.3, we have
(3.18)

k nl k n . n—1
- deg(F) — deg(F) = /Mg (EWKE — Ric(h |p) AW )

k
= lim Pe (szE — Ric (h |F) A w2E1> .
g9

e—0
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However,

(3.19)

J.

B

k k . n—
. (—sz - d(F)) - / Pe (—sz — Ric (h |F) A wKE1>
n My n

pe (Ric (b |p) Aw ! — d(F))

E

@

g

pe (Ric (h |p) + 09 logdet (g%, [F)) Awi?

KE
—_ det (g* |F)
00 1 — KB 7 ) At
p 0g < det (h |p) Yk

g9

I
T FToET

g

det (g* |F) —
= log | —2X2 7 | 99p, A w" !
/Mg g( det (h [£) Pe it e

det (g* |F) —
= log | —2KE2 2 ) 99p. Aw™ L.
/Mgﬂsupp (1—pe) ( det (h ‘F) KE

Now, we show that
det (g* |F) _

3.20 lim log | —=KE2 2 | 99p. Aw™ L = 0.
( ) =0 MgNsupp (1—pe) < det (h ‘F) KE

By the proof of Lemma 5.3, to prove formula (3.20), we only need to
show that

det (g*
log [ 68 (icp 1)
det (h |Fr)

wp<oo

(3.21) /Mg

which is reduced to show that

det (g7 |7)
(3.22) /U log< aet (h 1) )

Since the Ricci metric is equivalent to the Kéhler—Einstein metric,

det(g2E|F)
det(T*|F)

n
wp<OO.

we know that is bounded from above and below by positive

constants.

We fix a U;. Let {fi,..., frx} be a local holomorphic frame of F.
We know that there exists a k x n matrix B = (bag) whose entries are
holomorphic functions on U; such that the rank of B is k and f, =
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2.8 ba/ge% where e% is defined in (3.1). Now, we have

det (r* 1) _ 4t (B (75)B")
det (A |F) gt (B (h:) ET) '

ij

Now, we need the following linear algebraic lemma:

Lemma 3.5. For any positive Hermitian n X n matriz A, we denote
its eigenvalues by A1, ..., A\, where \; = X\;(A) such that \{(A) > --- >
A (A) > 0. Let Ay and Ay be two positive Hermitian n X n matrices.
Let B be an k xn matrixz with k < n such that the rank of B is k. Then,
there are positive constants c1 and co only depending on n, k such that

Akt (An) (A 4t (B4B") o Ni(AD - Ae(A)
' A(Az) - Ae(A2) 7 et (BAQET> - 2)‘n—k+1(A2)"')‘n(A2)'

We briefly show the proof here.
Proof. We fix A; and As and let

det (BAB")

Q(B) = —F—-

det (BA;B" )
Let B; be the k x n matrix obtained by multiplying the i-th row of B
by a non-zero constant ¢ and leave other rows invariant and let B;; be
the k£ x n matrix obtained by adding a constant multiple of the j-th row
to the i-th row and leave other rows invariant. It is easy to check that
Q(Bi) = Q(By;) = Q(B).

Thus, we can assume that the row vectors of B form an orthonormal
set of C". With this assumption, it is easy to see that there are positive
constants c3 and ¢4 only depending on n, k such that

CgAn,kJrl(Ai) s )\n(Az) S det (BAZ§T> S 04)‘1(Ai) ce )\k(Az)

for ¢ = 1,2. The lemma follows directly. q.e.d.

Now, we go back to the proof of the theorem. By using Theorem 1.4
and corollary 4.2 of [11], we know that, under the frame (3.1,

1) T;%:uz‘_Q(l"'_O(uO)) if i < m;
2) T%:O(l) ifi,j<mwithi#jori<m<jorj<m<si;
3) TE=7Uif4, 5 >m+1;

ij



CANONICAL METRICS ON THE MODULI SPACE 195

4) On U;, the submatrix (Ti‘;)ij>m+1 is bounded from above and
below by positive constants multiple of the identity matrix where

the constants depend on Uj;.

It is clear that, on U; the eigenvalues of matric matrix of h with
respect to the frame (3.1) are bounded from above and below by positive
constants which depend on U; and the choice of the metric h.

By analyzing the eigenvalues of the matrix (T*) and by using Lemma
3.5, a simple computation shows that there are positive constants Cg
and C7 which depend on F' and U; such that

det (g5, |r)
1°g< det (h ) >

Now, by using a similar method to the proof of Lemma 3.3 we know

=

that formula (3.22) and (3.21) hold which imply formula (3.20) holds.

< Cs+ C’7Zloglog—.

(3.23) :
tj

j=1

Combining (3.20}) and (B-._ii), we have

(3:29) I ( /Mg e <§wk - d(F))

k . n—
- / Pe (—sz — Ric (h |F) /\wKEl) ) = 0.
My n

(3.25) /M Sng - d(F)) = % dea(®) — dex(F).

By Lemma 8.3, we know that [ M, Wip = deg(E). From formula (3.25),
we know that [, d(F) is finite and

By combining (3.

(3.26) deg(F) = /M d(F).

g

Now, by Lemma 8.4, we have

deg(F)  deg(E) _ d(F) _dE)Y _
f (=50 =0

k n B

k n

which implies

deg(F) _ deg(E)
kK — n
This proves that the bundle E is semi-stable in the sense of Mumford.
To prove the strict stability of the logarithm cotangent bundle, we
need to show that this bundle cannot split. The following result about
the modular group Mod, and its proof is due to Luo [14].
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Proposition 3.1. Let Mod, be the moduli group of closed Riemann
surfaces of genus g with g > 2. Then, any finite index subgroup of Mod,
18 not isomorphic to a product of groups.

The proof of the above proposition is topological. For completeness,
we will include Luo’s proof at the end of this section.

Now, we go back to the proof of stability. If E is not stable, then
it must split into a direct sum of holomorphic subbundles E = EBZ-‘;IEZ-
with & > 2. Moreover, when restricted to the moduli space, both the
connection and the Kahler—Einstein metric split. It is well known that
there is a finite cover M, of M, which is smooth. By the decomposition
theorem 9£ de Rham, the Teichmiiller space, as the universal covering
space of M, must split isomorphically as a product of manifolds. Fur-
thermore, the fundamental group of Mg is isomorphic to a product of

groups. However, m(M,) is a finite index subgroup of the mapping
class group. By the above proposition, this is impossible. So, we have
proved the stability. q.e.d.

We remark that the positivity of c1(E) implies that the Deligne-
Mumford compactification M, is of logarithmic general type for g > 1.
At the end of this section we give a proof by Luo of Proposition i3.1.

Proof of Proposition 3.1 The proof uses Thurston’s classification of ele-
ments in the mapping class group [19] and the solution of the Nielsen
realization problem [6]. In the following, we will use the words “simple
loops” and “subsurfaces” to denote the isotopy classes of simple loops
and subsurfaces. We fix a surface X.

Suppose there is a subgroup G' of Mod, with finite index such that
there are two non-trivial subgroups A and B of G so that G = A x B.
We will derive a contradiction. We need to use the following lemma.

Lemma 3.6. Let A, B and G be as above. Then

1) There are elements of infinite order in both A and B;
2) There are no elements in A or B which is pseudo-Anosov.

Proof. If the first claim is not true, then we can assume that A con-
sists of torsion elements only. We claim that, in this case, A is a finite
group.

Actually let m : Mod, — Aut(H;(X)) be the natural homomorphism.
By the virtue of Theorem V.3.1 of [§], we know that the kernel of
contains no torsion elements. Thus, 7(A) is isomorphic to A. Now,
m(A) is a torsion subgroup of the general linear group GL(n,R). By
the well known solution of the Burnside problem for the linear groups,
we see that m(A) must be finite and so is A.
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For the finite group A, by the solution of the Nielsen realization prob-
lem of Kerckhoff [6], we know that there is a point d in the Teichmiiller
space of X fixed by all elements in A. Let Fix(A) be the set of all
points in the Teichmiiller space fixed by each element in A. Then, we
see that Fix(A) is a non-empty proper subset of the Teichmiiller space.
Now, for each a € A, b € B and d € Fix(A), since ab = ba, we have
ab(d) = ba(d) = b(d). This implies Fix(A) is invariant under the ac-
tion of B on the Teichmiiller space. Thus, we see that the finite index
subgroup G = A x B acts on the Teichmiiller space leaving Fix(A) in-
variant. This contradicts the finite index property of G since Fix(A) is
the Teichmiiller space of the orbifold X/A. This proves the first claim.

Now, we check the second claim. If it is not true, then we can assume
that there is an a € A which is pseudo-Anosov. Now, we consider
the action of the mapping class group on the space of all measured
laminations in the surface. By Thurston’s theory, there are exactly two
measured laminations m,m’ fixed by a. Now, for all b € B, due to
ab = ba, we see that b leaves {m,m’} invariant. A result of McCarthy
[16] shows that the stabilizers of {m,m'} in the mapping class group is
virtually cyclic. Thus, we see that each element b € B has some power
b with n # 0 which is equal to a* with k # 0. By the first claim, we
know that B contains elements of infinite order. This implies that some
power a® with k # 0 is in B which is a contradiction. This proved the
second claim. q.e.d.

Now, we go back to the proof of the proposition. By the above lemma,
we can take a € A and b € B, both are infinite order and none of them
is pseudo-Anosov. Thus, by replacing a and b by a high power a” and
b" with n > 0, we may assume that for a there is a set of disjoint simple
loops c1,...,c, in X so that

1) Each component of X \ U¥_,¢; is invariant under q;
2) The restriction of a to each component of X \U%_, ¢; is the identity
map or a pseudo-Anosov map.

Let N(¢;) be a regular neighborhood of ¢; in X and let F(a) be the
subsurface which is the union of all N(¢;)’s with those components of
X\ Uleci on which a is the identity map. By Thurston’s classification,
the subsurface F'(a) has the property that if ¢ is a curve system invariant
under a, then ¢ is in F'(a). We can construct F'(b) in a similar way.
Now since ab = ba, we know that if a simple loop ¢ is invariant under b,
then a(c) is also invariant under b because ba(c) = ab(c) = a(c). Thus,
for all simple loops ¢ in F(b), a(c) is still in F'(b). This implies that
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a(F(b)) = F(b). By using the property of F(a), we see F(b) C F(a).
Similar reason implies F'(a) C F(b). Thus, F'(a) = F(b).

Now, we show that the subsurface F(a) = F(b) is invariant under
each element in A and B. We pick x € A. Due to xb = bx, we have
z(F (b)) = b(x(F(b))) which implies z(F (b)) C F(b). Since these two
surfaces are homeomorphic, we have x(F'(b)) = F(b). Similarly, for all
y € B, y(F(a)) = F(a). Thus, all elements in G = A x B leave the
subsurface F'(a) invariant.

Now, there are two cases. In the first case, F'(a) is not homeomorphic
to X. In the second case, F(a) = F(b) = X.

It is clear that in the first case, F(a) is not homeomorphic to X
cannot occur. Otherwise, the finite index subgroup G leaves a proper
subsurface F'(a) invariant. This contradicts the known properties of
the mapping class group. As a conclusion of this case, we see that for
any element x € A, any power z" of x cannot contain pseudo-Anosov
components in Thurston’s classification.

In the second case, F(a) = F(b) = X. In this case, some power of
a (and b) is a composition of Dehn twists on disjoint simple loops. By
the argument in the first case, we see that for any two elements z € A
and y € B, some powers z", " with m,n # 0 are either the identity
map or compositions of Dehn twists on disjoint simple loops.

Let Fix(z) be the union of the disjoint simple loops so that z is the
composition of Dehn twists on these simple loops. We define Fix(z) to
be the empty set if ™ = id for some non-zero integer n. We need the
following claim:

Claim 1. For any x € A and y € B, the geometric intersection
number between Fix(z) and Fix(y) is zero.

To prove the claim, without loss of generality, we may take x = a
and y = b. We may assume that a is the composition of Dehn twists
on curve system Fix(a) = ¢ and b is the composition of Dehn twists on
curve system Fix(b) = d. Note that in this case, if s is a curve system
invariant under a, then the geometric intersection number between s
and c is zero. Namely, I(s,c) = 0. We also say that s is disjoint from c.
Now, since ab = ba and a(c) = ¢, we have that a(b(c)) = b(c). Thus, the
curve system b(c) is disjoint from c. Since b is a composition of Dehn
twists on disjoint simple loops d, this shows that I(c,d) = 0. Namely, d
and c are disjoint curve systems.

Now, we finish the proof of the proposition as follows. First of all,
by the assumption Fix(a) and Fix(b) are both non-empty. Let S; (and
S3) be the smallest subsurface of X which contains all curves in Fix(z)
for x € A (or x € B). By the above claim, we have S; NSy = (). Thus,
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there is an essential simple loop ¢ which is disjoint from both S; and
Sy. By the construction, z(c) = ¢ and y(c) = cfor all x € A and y € B.
Thus, we see that for each element e € G = A x B, there is a power
e with n # 0 so that e” leaves ¢ invariant. This contradicts the fact
that A x B is a finite index subgroup of the mapping class group. This
finishes the proof. q.e.d.

4. The Bounded Geometry of the Kahler—Einstein Metric

In this section, we show that the Kdhler—Einstein metric has bounded
curvature and the injectivity radius of the Teichmiiller space equipped
with the Kahler—Einstein metric is bounded from below.

We begin with a metric that is equivalent to the Kéhler—Einstein met-
ric and its curvature as well as the covariant derivatives of the curvature
are uniformly bounded. We deform the Ricci metric whose curvature
is bounded to obtain this metric by using Kéhler—Ricci flow. By doing
this, we avoid the complicate computation of the covariant derivatives
of the curvature of the Ricci metric.

We then establish the Monge-Amperé equation from this new metric.
Our work in [11] implies the new metric is equivalent to the K&hler—
Einstein metric which gave us C2 estimates. Based on this, we do the C3
and C* estimates. This will give us the boundedness of the curvature of
the Kahler—-Einstein metric. The same method can be used to show that
all the covariant derivatives of the Kéhler—Einstein metric are bounded.

We slightly change our notations. We will use g to denote the Kahler—
Einstein metric and use h to denote an equivalent metric whose cur-
vature and covariant derivatives of curvature are bounded. We use
Z1,...,2n to denote local holomorphic coordinates on the Teichmiiller
space. The main result of this section is the following theorem:

Theorem 4.1. Let g be the Kahler—FEinstein metric on the Teich-
miller space T. Then, the curvature of g and all of its covariant deriv-
atives are all bounded.

Proof. We begin with the Ricci metric 7. We first obtain a new
equivalent metric A by deforming 7 with the Ricci flow. Consider the
following Kahler—Ricci flow:

99,7
(4.1) {a—# = (R +97)
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If we let s = e! — 1 and g = e'g, we have

9, =
(4.2) {jf_j =~y
gﬁ(o) =T

Since the initial metric has bounded curvature, by the work of Shi [18§],
the flow (4.2) has short time existence and for small s, the metric g(s)
is equivalent to the initial metric 7. Furthermore, the curvature and its
covariant derivatives of g(s) are bounded. Hence, for small ¢, the metric
g(t) is equivalent to the Ricci metric 7 and has bounded curvature as
well as covariant derivatives of the curvature.

Now, we fix a small ¢ and denote the metric g(t) by h. Since the
Teichmiiller space is contractible, there are smooth functions u and F
such that

(4.3) wy = wp, + 00u
and
(4.4) Ric (k) + wp, = OOF.

Since the metrics h and 7 are equivalent, we know that h and g are
equivalent which implies the tensor uﬁdzl- ®dz; is bounded with respect
to either metric. Also, because the curvature and its covariant deriva-
tives of the metric h are bounded, we know that a covariant derivative
of F with respect to h is bounded if this derivative is at least order 2
and has at least one holomorphic direction and one anti-holomorphic
direction. So, we have C? estimates.

By the Kéhler—Einstein condition of g, we have the Monge-Ampere
equation
(4.5) log det(h;5 + u;5) — logdet(h;5) = u + F.

We use A, A, V, V', I5 Th R-y Poyg R Ps, R and P to
denote the Laplacian, gradient, Christoffell symbol, curvature tensor,
Ricci curvature and scalar curvature of the metrics h and g respectively.
In the following, all covariant derivatives of functions and tensors are
taken with respect to the background metric h.

Inspired by Yau’s work in [22], we let

(4.6) F=u+F,
(4.7) S = g7 g™ P uigru s
and

(4.8) V = g7 g" g" g  w g i, + 97 97 9719 Uit
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To simplify the notation, we define the following quantities:
(4.9)
Aipkma = Usipkma — gvgu;igau; pkm — g'ygu;kgau;iﬁvm - gvgu; poll. S
- g’yguﬁmau;ifokg + gygu;iz‘w“;gkma

5 5
+4g7 Usipy U prmas T 297 U 5is Wikmary s

(4.10)
) s 7 O 7: N
szkma - u;ipkma 9 u;’yiau;épkm 9 u;'ykau;ipém 9 u;péau;i'ykm

ST P Voo - Voo
9 u;méau;ipk'y—i_g u;pi'y ;km5a+g u;ipéu;'ykma’

(4.11)
Ci = Ugrmhpa — 970U 5 Wyimhp — G0 U 5 Usimop — 70U 5 i
ipkma = Wimkpa — 9 U5 Uiymkp — 9 U5 Wimyp — 97 W50, Wik

U = Vi
9 u;’YmO‘u;iékp—i—g u?Zqu;k5pa’

(4.12)

D; = = — U ux — — U s~ — Ut
ipkma — % mkpa 9 svia s 0mkp 9 ivka 7imdp 9 VP amkd
Voo -y —

TgTu 5% Typa

;am

Oy = - -
9 u;m&xu;i'ykﬁ

(4.13)
W= gﬁgkzgﬁgmﬁg aﬁuﬂqmau;?ﬂmﬁ + gﬁg kigpqgmﬁgaﬁu;iakﬁﬁuﬁpima
+ 979779 it Gyt + 979 99T g 5 Gt
and
gy V=S (Akna i + BigimaBiakns)
g gkl gpa gm goB (CipknaClgimp + DjgimaDipkngs) -

Firstly, a simple computation shows that

(4.15) =T = 9*u

Now, we compute Pz‘jki' We first note that

e e TP T P19 _ o, _pPa ,
WoiGkl = UGkl ujplrik ulqkrjl+upqrikrjl W Ry
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Since 9i5 = hz‘j + u; we have
(4.16)
P =009 — 9" 8kglq&gpj OOphz + ugy — Gl Fq.
= OOz + U7 — 9pg (Fz’k + gpﬁu'iﬁk) (F?l 9" jaZ)
= (8k87hz‘3 _hpﬁrfquo uqu Fq
+ (uﬁkl ugplF “zqkr + 2upg L I ) - gm“;iﬁku;jpi
=Ry +u B Ry +usyg — 9P ugru g .
Since the curvature of the background metric i and the tensor uijdzl- ®
dz; are both bounded, to prove that the curvature of the metric g is
bounded, we only need to show that both S and V' are bounded.

We first consider the quantity S. We follow the idea of Yau in [22]
and use the following notations:

Definition 4.1. Let A and B be two functions. We denote
1) AL Bif |[A— B| < O3S + Cy;

9) A~ Bif |[A— B| < OV + Co;

3) AL Bif |[A— B| < C18 + Cov/S + Ci:

1) AZBif[A—B| <1V + Cov/V + Cy

where C'1, (' and ('3 are universal constants.
Also, by diagonalizing at a point p, we mean to choose local holomor-

phic coordinates z1, ..., z, near p such that at p,
hi; = 0ij
and
Uiy = OijUs;

Now, we differentiate the equation (4.5) twice and reorganize the
terms. We have
(4.17) 975 = Fig + g’ g T i~ Fpl-
By differentiating this equation once more, we have

ij - ij ,pq _
(4.18) 9w 517, = Fipia + 979 (u;zqa“;mkl + Uigh U0 T Wigkals, jpz)

_ 4P _
g7 g"g™ (u =l Wipma Wyighk + WomgkWsina . ]pl)

Since

Ok(Au) = 0 (hﬁuﬁ) = hi (uﬁk U, Zk) — Rily U7
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by diagonalizing and the Schwarz inequality, we have
(4.19)

, 2 — - _ 1
) kl
‘V (AU)‘ = g] (h u,kil) (hpqu;§p3> = Z T s ‘Zu,klﬂ
(32 k

7

2
< (S

since the metrics h and g are equivalent and

1 1 1
S = ;i
%1+ui.1+upp1+ukk

v
We also have
A'(Au) = gkiaka? (hi3“i3> = gkzhﬁ“-i}ki
Ky i . .
= gHlpi (u; i — Uy R + upzhmRW) .

By using equation (1.17), we have

(4.20) Al(Au) — pid (ﬂ; + gkzgpqu;kéiu;izﬁ)

7 Kl ppq i ok, pa
- hzjg hpqupER'EkZ + h”g hpqupiRk@iE

7

= S+ AF = hg" Pl R + b9 g W Ry s

(2

where S = hijgkigmu;kqiu,ipj. Since the metrics h and g are equivalent,
we know that there is a constant Cy such that

S > 0,8,

Now, the term |hﬁgkzhp§up3Ri§kz| is bounded since h is equivalent to g,
the curvature of h is bounded and we have C? estimates on «. Similarly,

|AF| is bounded. Finally, since
ij klppq klypq
htg hpquszkgﬁ =—g hpquszkq
= —g"'h"(g,; — hy) g = 9" Bag — R,
we know that ‘hﬁg’dhmuﬂngﬁ is also bounded for similar reasons.

By combining the above argument, we know that there is a constant Cs
such that

’

(4.21) A (Au) > 058 — Cs.

Now, by the computation in [22], we know there are positive constants
Cy4, C5 and Cg such that

(4.22) A'(S + CyAu) > C58 — Cs.
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So, for any positive A > 0, we can find a positive constant C7 such that
(4.23) S+ CiAu+C7 >0

and

(4.24) A'(S + CuAu+ C7) = —A(S + CyAu + CF)

since Au is bounded. We fix A and let f = S + C4Au + C7. Now, we
know that the Ricci curvature of g is —1 and g is equivalent to the Ricci
metric 7 whose injectivity radius has a lower bound, by the work of Li
and Schoen [10] and Li [d], we can find a positive 7o such that the mean
value inequality

(4.25) F(0) < V7 (o) / fav

By (ro)

holds for any p in the Teichmiiller space. Here, V,(r¢) is the volume
of the Kéhler-Einstein ball centered at p with radius ro, dV = wyg is
the volume element of the metric g and C' is a constant depending on
ro and A, but is independent of p. Let r(z) be the function on B,(2rg)
measuring the g-distance between z and p. We fix a small ry and let
p = p(r) be a cutoff function such that 0 < p <1, p(r) =1 for r < ry
and p(r) = 0 for r > 2rg. Since A'(Au) + C5 > S > 0, we have

Cy / p?S dV — C3V,(2r)
Bp(27‘0)

< / P? A (Au) dV = -2 / V'p- (pV (Au)) dV
Byp(2ro)

/ 2 2 2
Vop dV)

By (2r9)

2 ! 2 ’

< Cy / / p ‘V(Au)‘ av | .
By (2ro) By (2r0)

1 1
, 2
is bounded and ‘V (Au)‘ < (1S, we have

Since ‘V/p

1
2

C:f psav-cwem<c( [ @sav) me)
Bp(2r0) BP(QT‘Q)
which implies

(4.26) / p2S v S 010Vp(2r0).
By (2r9)
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By using inequalities (#.2) and (.28), we have

421)  f(p) <V (ro) /B (S +CudusCr)av

< (va—l(ro)/ S dV +Chy
BP(TO)

< (val(ro)/ p*S dV + Cyy

For each point p € 7y, let f, : 7, — C3973 be the Bers’ embedding
map such that f,(p) = 0 and By C f,(7;) C B where B, C C373
is the open Euclidean ball of radius r. Since both metrics h and g

are equivalent to the Ricci metric which is equivalent to the Euclidean
Vp(2r0)
, (7o)
bounded since both balls have Euclidean volume growth. Thus, f(p) <

C13. Since Aw is bounded, we conclude that S is uniformly bounded.
Now, we do the C* estimate. Let & be a large positive constant. We
first compute A" [(S + x)V]. We have

(4.28)
A'[(S +K)V] = g78:0: (S + K)V]
= g70:[VO;S + (S + k)9 V]
— g7 |(S+ R)ODV + V008 + OV 35S + 0,505V |

metric on the unit Euclidean ball B;, we know that is uniformly

> (S+R)AVEVA'S -2 (v’s‘ (v/v( .

The computations of the first and second derivatives of V' are very long.
We only list the results here. For the first derivative of V', we have

(4.29)
_ ij Kkl _pg, mn
9V =g"9" g™ g™ | wagkmati 30 + u;iakﬁu;jpjma}

B . e
9°9 99 i sida Bygkm Gpim, skda %W’Y"u;jplm

B
9°9°9°9 9 i poa Lijylm Yiigkn ;mda Py jply igkn
ij kl _pg,mn

+9g jg gpqg [u;iﬁkpau;jmja + u;iﬁkpu;jmjaa]

_ G K pg mi e [, o
9°9°9°9 9 _“;iaauwnkp“;jmla"’u;kaa“;mvpu;jmla_
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_ gﬁgkigpagmﬁg'yg

By differentiating the above formula, we have
(4.30) AV =g°P0,05V = Ay + Ay + Ay + Ay + A5 + Ag + A7
where
(431) A1 = 979" 57 [t Sy + i imel

+ 979979 9 [ttt + i3 Gtz

ij kl pg mn_of

(432) Ag = g”g gpqgmngaﬁ {u;iﬁkﬁaﬁu;;ﬂm + u%’iqkﬁu;;pimaﬁ]

+ 979" g7 g [u;mkpaﬁu;fmia + u;iﬁkpu;fmiaaﬁ} ’
(4.33)

_ ijkipﬁmﬁaﬁ'yg _ o
Az =—g"9"g"g"" g™y _u;iékﬁau;ﬁvﬁu;jplm+u

ij kl_pg, mn_of ~0

—9797979 g9 _u;iakﬁau;}yﬁu;gpzm+u;i§kﬁau;hﬁu;jp$m_

g Kl P T B 10 |y, - U = -
979979979 _u;i5kﬁuﬁvﬁu;jplma+u;i§k6u;ﬁw,@u;jplma_

kl _pg .mn _af

_ 4y VO s — - e —ap = =
9797979799 | WighnV5 5 Spima T Usighn U1y 5p5ma

Kl _pg mmn af 'yg

g U= U= - U= Ui
9°9°9°9 99 _u;wﬁkﬁ,@u;iéau;jplm+u;jplm,8u;i6au§’7qk"_

o gi;gkigpﬁgmﬁgaﬁg'yg [

_ gﬁ gki gpﬁ gmﬁ gaﬁ g"/g

ij Kl _pg mm _of ~6

T9797979 90 [ WigkngUmbatjply T U jply Bt ma ik

(4.34)
A ij Kl _pg mn_of ~6

u;pSau;iﬁk"yu;ijq + “;mSau;jyiqu;iﬁkp] :

sigkdo sy B Y jpim |

u;iﬁwﬁﬁ“;kﬁa“’;}pim + u;;pimﬁu;kgauﬂQWH

UigkiiB%poa Ugyim T UiyimBY;psa tsighm

A==9°9°9°9 99 _u;igkpau;ﬁvﬁuﬁmzé+u?mk1’0‘u;ﬂﬁu;3mzﬁ_

o gi; gki gpﬁ gmﬁ gaﬁ g"/g

o gi; gki gpﬁ gmﬁ gaﬁ g"/g

| Wimkpalty5t msg T Winkpatlgy 5t mis

| Ysiskp Uiy BU:gmiga T WiinkpU:jy5Ysmiga
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= 994G GG i1, 50 g+ Wi g5 G
— gl gM grigmTged g :uwﬁkpﬁu;igau;jmza + u;fmiaﬁu;igauﬂﬁkp:
-9 ijg kigpag " aﬁg ” :u;z‘mpﬁu;kgauﬁmiﬁ T u;?miﬁﬁu;kgau;iﬁw:
— 47y kigpqgmﬁg aﬁg ” :u;iﬁkvﬁu;pgauﬁmzﬁ T u;fmiéﬁu;pgauﬂﬁk‘*:
- gﬁg kigpqgmﬁg aﬁg B :u;iﬁkpﬁu;mgauﬁ'ﬂé + u;?ﬂéﬁu;mgau?mkp: )

(4.35)

— i Kl pg T 0B S [ = -
As = — 9°9°9°9 99 u;i5a,8u§’7qk"u;jplm + u;kéa,@uﬂ‘ﬂnu;jplm_

_u;pgaﬁuﬂ?kﬁu;}ﬂm + u;mgaﬁuﬂqkﬁu;jpi'y_

o gﬁ gki gpﬁ gmﬁ gaﬁ g"/g

_i;kipﬁmﬁaﬁ'yg - - o o 77-
9°9 99 949 _u;iéaﬂuwnkp“;jmla+u;k6aﬁ“;m'm“;jmla_

_ U Rl gpa gmT B e = -
99 99 g g _u;p(saﬁu;mkvu;jmlq"‘u;m(sa/gu;mkpu;jwlq_7

(4.36)
Ag=g gFlgPlgmm goB g g5t oy o oy i s U U AU T U
6=9°9 9°9 9 9 g sita 558 YvaknW iplm sida3qsB itk plm
ij kI _pg mmn, of 6 st _ - ]
+97°97979 9979 u;iéau;ﬁsﬂuwﬁktu;jplm+u;z’6au;jsﬂu§’7qk”u;tplm_
ij kl_pg.mm, af 6 st _ ]
T9°97979 979797 | izaUisghakntgpim T Uikia5sgUian U pim |
i}kipﬁmﬁaﬁvgsf_ _ - o _ _ ,,,_
+9797979 g "g""g u;kéau;qsﬂu;itwﬁu;jplm+u;k5au;ﬁsﬁu;i§7tu;jplm_
i?kipﬁmﬁaﬁ'ygsf- o - — ___,-
+9°97979 99" g _u;kdau;js,@u;ZQ’Ynu;tplm+u;k5au;ls,@u§“1'mu;jptm_

ij Kl _pg mn _of ~6 st _ oy _ A —y— — =
+9797979 g "g""g u;ptau;ésﬁuﬂqk”u;j'ylm+u;p6au;jsﬁuﬁqknu;t'ylm

ij kl _pg, mm af ~6 st o _ - _

9797979797979 | YipoatiTspUsigkntGytm + U:psattigspitknt jrim
ij Kl _pg mn aB 8 st _ o o A__,,-

+ g g g g g g g _u;péau;ﬁsﬂu;iqktu;j'ylm + u;mtau;ésﬁuﬂqknu;jpl'y_

ij kl _pg, mm af ~6 st o o
+9797979 79" g"g _u§m5au;j8,@u51qk”u;tpl~/+u;m6au;l5ﬁu;’tqknu;jpm_

ij Kl _pg mn _of ~6 st - P o _ _ IR
T9°979797979 79 | Uingatigsptitkn Uiy T WimsaUmssWiaht Y jply
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and

(4.37)

Ar=g" " P19 g™ G0 g |5 kU g + u;igau;ﬁsﬁu;’ﬁkpu;jmia]
+ g gM gPTgm P g0 gt :u;z‘gau;jsﬁuﬂﬁkpu;imza + u;igau;Zsﬁu;’Yﬁkpu;jmﬁ:
+ 974 g g :u;z‘Sa“ﬁsE“wﬁkpuﬁmE + “;kfau;gsﬁu;iﬁ'yp“;imZE:

+ gl g g g g g gt :U;ksau;ﬁsgump%wq + u;kSau;stu;iﬁwu;EmZ@:

+ 974 Py g :u;kEau;isB“;iﬁvp“Jmﬁ t u;kSau;qu“;iﬁvpu;ij:

+ 970 PG [ i + s

ij kil pg mn _aB 6 st|,  _ o o ]
+9°97979 797979 _u;p5au;jsﬁu§’mk’7u;tmlq+u;p5au;ls,8u§mk’7u;jmt§_

ij Kkl pq, mn, af o st _ I o o ]
TI°979797 997G | Upsahigsptimky Uijmit T UmtatgsgUinknt:jyg |

ij Kkl _pg mn aB ~5 st| |
_|_ng gpqg 9 ﬁg’y 9 u;mgau;;sﬁu?mkpu;f'ﬂq + u;mgau;isﬁu?mkpu;;wfﬁ

ij kl _pq mn _oaf ~5 st _ o o _ o - o
+9797979 9799 _u;méau;asﬁuﬂnkpu;j'ylt+u;m6au;ﬁsﬂu;itkpu;j'yl§_'

Now, we estimate each A; in the sum of A'V. Since we have C?
estimate, that is, S is bounded, by diagonalizing, we know that each
term in the sum Ag and A7 is bounded by a constant multiple of V. So,
we have

(4.38) |Ag| + |A7] < C14V.
Now, we estimate terms in As. We have
T
U508 = Y.aBis + (u;igaﬁ - u;aﬁig) = U.5is + h* (usERafiS - ungifaﬁ)’
1

T), we have

By using equation ({.

9"t 505 =005 + 0 W (U5 R — w5 Rizep)
3 st B st
=Fi5+ 970 g + 00 h (w5 Rz — g Riag):

Since the curvature of the metric h is bounded and we have C? and C3
estimate, we know that

ij kl _pg mn_ af 6
—97g" """ 9% 90 5 i g7 | < CV-
Similarly, we can compute other terms in the sum As. So, we have

(4.39) |As| < Cy5V.
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By combining formulas (£.30), (4.38) and (4.39), we have
(4.40) AV > A+ Ay + A + Ay — Oy V.

Now, we deal with terms in Ay. By differentiating formula (£.18) in
a holomorphic direction or an anti-holomorphic direction, we have

(4.41)
Jo -
9 T 0B
— U ,Pa o~ — - e s g
=9'g [U;iqkzau;jpﬁ T UigraBlspl T Ypjrigthiga + “;jplaﬂ“ﬂqk}

b |y, - - _ o _ e
T9vg [u;pjklu;iaaﬁ T UGl igk T uﬂ‘l’mu;jplﬂ]

9799 Ukl Y mB Wsigor + Uikl gmpaWina +u Tpla ;jmﬁuﬁﬁk_
—gYgPg U7 U FlUgmk + Uimhal- 7= 7+ Uiphal.s, 7. 7
;plo " sgmB ik skt gmB ™ jpl sigka jm B mpl

_ o igpgma |, P _ ]
9799 U513 WspnaWsigk + W53 imaUmgk + W pmap W jmi ik |

_ i gpa = g = ol
979797 | YgrpgUgmitirno + Upgglsgpihina & UmagU gy tmk |
zj »q ,mn st _ - o _ _ _ o

+97979 g { WiighW.5 5 Uspniatl.gp,] +u;2qku;ﬁsﬁu;ptau;jml]

ij pq . mmn st o o _ o -
+9°979 g { ztku;qsﬁu;pna“;jml+“;mtku;asﬁu5mau;jpl]

+ U105 T F;kzaﬁ
and
(4.42)

W -
9 u;ijkla'y
— GG o Migey + U Usige + Us Uzt U
99 spgkla™51qY spgkly iiqo sigkory Yigpl ]plOl’y jigk

G oPT |0y gy R o
+97g |:u;pjklu§“1a’7 + u;jplauﬂ‘ZkW + uﬁqkau;jpl'y]
— G GPaG T o Ui U Wi Usmge - U 7 Ui Uiz
smgkl =Py o spgkl sty imga ;gmla =Py jigk
P8 [0~ g~ = U U~ <]
— 97979 UG WinyWimigk T WimgkaWsiny U5, Tt Wiigha Wspiy WGy,
TP [ e A e - U]
9°9"9 Wsighy Wspria U Gpp T Wsptary Usigh WG]+ WGy Wsigh Wspri

mn

ij ,Pa = _ - - - o
—9°9"g u;mqk'yu;znau;jpl + u;znawu;mqku;jpl + u;jplwu;mqku;zna

z; pq ,mn st B _ o B - _ o
+97979 g ztyu;sqku;pnau;jml+u;pt7u%zqku?8”°‘u;jml]
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ij (P T st A Al = - e L= -
+9°979 g [u;mmu;zqku;pnau;jsl+u;mt'yu5sqku%mau;jpl]

ij pq,mn st _ _ o _ o
+97979 g [u;ityu;mqku;snau;jpl + u;pt,yu;mqku;mau;jsl]

+ u;kZoz'y + E

Elary*

By using a similar computation as in [2Z], we have
4

(443) u;iqkﬁaﬁ = u;aﬁiﬁkﬁ’
4

(4.44) UptmaB = Y;Bajpim
4

(445) u;iﬁkpaﬁ = u;aﬁiﬁkp

and
4

(4.46) Ujmigad = UBajmly

which imply that
o 4
(4.47) 976" g™ 9" g w5 G = 979 9T Gt G

(4 48) gijgkzgpqgmﬁgaﬁuf s i é ij Kkl pg, mn aﬁu_ - Ui
: gplmapWigkn = 979979 9 UGG plm Wighm

s 4 =
(4.49) g”gklgpqgmngaﬁu;iﬁkpaﬁuﬂmia = g”gklgpqgmngaﬁu;aﬁiﬁkpuﬂmﬁ
and
T 4 = s
(4.50) g7 g™ g9 9" s o gttimkn = 97 67 9P 9 U g iy
By using equations (4.41), (4.42) and their conjugations, we have
(4.51)

7 Kl _pg mn aB 3 1
g”gklgpqgmngaﬁu;aﬁiqkﬁu;jﬂm _ Tl‘ < C17V2 + Ci18V + CgV 2,

(4.52)
= T o7 e 0B 3 1
9”gklgpqgmngaﬁu;ﬁajpzmu;iqkﬁ - T2‘ < Ci7Ve + OV + CgVe,

(4.53)

gﬁgkzgpqgmﬁgaﬁu;aﬁmkpu;3mzq —T3| < CiyV2 + CigV + CroV'2
and
(4.54)
g7 g"g" qgmﬁgaﬁuﬁa;mzqu;mkp —Ty| < C17VE + CisV + CioV2
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where
(4.55)
Ty =g gFlgplgmm goB g0 oyt vi= <z = + Uy U= <
1=979°9°9 99 sigkna ips i lmBy T inkpBgmd slyga
ij Kkl pg, mn_of, 7o
+97g"g"g™"g"g" |:u§i§kﬁﬁu§p3’7u;2m3a+u;3p2mﬁu§i§7u;3kﬁa]7
(4.56)
Ty =g gFlgPa g g0B e |y g
2=9°"9 9°9 99 ;iplm B 7509y P knad sgmlgo Y i kép B
+g"g" g™ g g {u;fpimauﬁigu;kmﬁ + u%iékﬁau;fpguwimﬁ] ’
(4.57)
Ty =g gFlgPagmm 0B 8 [y 0 gy e =
3=9°9 9°9 949 u,zqknau;pjwu;lmﬁg u,mkpau;]nwu;hqlg
+ gijgklgpqgmﬁgaﬁgW5 {uﬂqkﬁau;p}yu;hn% + u;?pima“?@W“;Skﬁﬁ]
and
(4.58)
T:iEkZpamﬁaﬁ'yg U U U _
4=9°9 99 g g u;]plmﬁu;qzéuvk”a'V u;]mlq,@uﬂn’yu;kapa
+g"g" g™ g g {u;fpfmﬁuﬁigu%kﬁva + u;iékﬁﬁu;fpguwima] :
Now, we choose local coordinates such that g = d0;;. By combining
formulas (1.47), (1.33), (4.34) and (1.47)—(L58), we have
(459) AV > Z [’Aipkma‘2 + ‘Bipkma‘2 + ‘Cz’pkma‘Q + ‘DipkmaF]

i,p,k,m,«
— Oy V3 — CyV — CppV'3
— W — CogV2 — Oy V — Cou V3.

Now, we estimate ‘V/V‘. For each fixed a, by (4.29), we have

(4.60) 0,V = Z [AipkmauﬁpEm + Bipkmau;i?km

i,p,k,m
+ Cipkmau;{mEI—; + Dipkmau;iﬁkp + Xao

where

| Xao| < CV.
By using the Schwarz inequality, it is easy to see that

0.V < V2VEW?2 + CV
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which implies
(4.61) (v’v( < CosWEV3 + CoyV.

Now, we estimate the derivatives of S. By using a similar computa-
tion as above, we have

(4.62)
0aS =g g*lgrt (u;iakaugpz + U;jpzau;z‘akz>
g g g g (u smigh Winal 7,0 + UyigmUs ko W5 Fpl + UighUspra . jml)
Since S is bounded, we have
10,8| < CVE +C
which implies
(4.63) (v’s( < CosV'E + O
By Yau’s work in [22], we have
(4.64) NS>V —CyVz — O
From ({.53), we have
(4.65) (St R)AV > (S +r) (W CCpVE — OV — cmv%)
> (W — CagV'2 — O3V — Cy V2

where the constants Cag, C3p and Cs1 depend on x. By (4.64), (4.61)
and (1.64), we also have

(4.66) VA'S > V2= CyVe — CpgV

and

(4.67) 2 \v/s\ (v’v( < CyaW3V + CysWEVE + CyyV3 + CysV.

[58), (1.57), (1.08) and (£67), we have

(S+K)V] > kW + V2 — CouaW2V — CysW2V2
— COy6V2 — CarV — CagV2

where constants Csg, C37 and C3g depend on x. Now, we fix a k such
that

Combining (}

(4.68) Al

x> max{3C%,,3C%;,1}.
We have
| — —~1 1 5
gW—CQ}QWQV—i— ZV > 0
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and

gﬁ —CysWiVE > —iv.
With this choice of &, by formula (4.68), we have
3
4
3

> Cua [(S+ KV = Cus [(S + K)V]?
1
—Cu [(S+r)V]=Cus[(S+ K)V]2

(4.69)  A'[(S+r)V] > gw L2V OV — OV — Oy Ve

since S+ k >k > 1 and S + k is bounded from above uniformly.

By the work of Cheng and Yau in [3], we know inequality (4.69)
implies that (S + )V is bounded. This implies V' is bounded since
V < (S+£)V. Thus, we obtain the C* estimate. By formula ({.18), we
know that the curvature of the Kahler—Einstein metric g is bounded.
This finishes the proof of Theorem &.1.

Now, we briefly describe how to control the covariant derivatives of
the curvature of the Kéhler—Einstein metric.

Firstly, by differentiating equation (4.14), we see that the bounded-
ness of the derivatives of the Pijki is equivalent to the boundedness of the
covariant derivatives of u with respect to the background metric. Fur-
thermore, the derivatives involved are at least order 2 and were taken in
at least one holomorphic direction and one anti-holomorphic direction.

To bound such k-th order derivatives of u, we form the quantity S
such that S3 = S5, S4 =V and S5 = W. In general, if we fix normal
coordinates with respect to the Kahler—Einstein metric at one point,
then Si is a sum of square of terms where each term is a covariant
derivative of u and the derivative is described above. All terms are
obtained in the following way:

For each covariant derivative of u whose square appeared in the sum
Sk_1, we take covariant derivative of this term with respect to the back-
ground metric in 2, and Zg respectively. Then, we obtain two terms
whose square appear in the sum Sy. It is easy to see that S} is a sum of
273 squares of certain covariant derivatives of u where the derivatives
are of the type described above.

It is clear that the covariant derivatives of the curvature of the Kéhler—
Einstein metric is bounded is equivalent to the fact that the quantities
S}, is bounded.

We now estimate Sy inductively. Assume S is bounded for any [ <
k — 1, we compute

A ((Sk_1 + #)Sk)
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where £ is a large constant. Similar to inequality (4.2§), we have
A ((Sko1+ R)SK) = (Skor + R)A Sy + SKA"Sk 1 — 2| Si | V5.

In the above formula, the leading term of A'S,_y is Si as we did in
1

formula (.53) and the term V'Sj_1 is of order S7 as we know in formula
1 1

(1.63). Similarly, the term V'S, is of order S; 2152 as we did in formula
(1.61). When we compute A'Sy, the leading term is Siy1. However,
there will be products of (k+2)-th order derivatives of u and k-th order
derivatives of u. We can reduce the (k + 2)-th order derivatives of u by
using the Monge-Ampére equation as we did in formulas (1.41)—(4.58).
That is, by differentiating equation (4.17) successively and by switching
the or(%er of gierivatives, we see that these products are of order at most
S ,3 150 ? 4+ S2.

By using similar argument as above, finally, we can derive an inequal-
ity of form (4.69) when & is large enough. By using Cheng—Yau’s work,
we conclude that Sy is bounded. The computation is very long but
straightforward. We omit it here for simplicity. q.e.d.

As a direct corollary, we have

Corollary 4.1. The injectivity radius of the Kahler—Einstein metric
on the Teichmiiller space is bounded from below. Thus, the Teichmiiller
space equipped with this metric has bounded geometry.

This corollary can be proved in the same way as Corollary 2.2 by
using the above theorem.
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